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1 Introduction

This text on QFT is strongly biased as far as the selected material is concerned. It
was mainly written in order to provide, in a brief survey form, some background
necessary to start a thesis work in my group.

The text is also quite “orthogonal” to many modern text books on QFT. The
latter tend to take the Gell-Mann–Low formula (or an equivalent path integral
formula) as a starting point, or at least arrive at it along sometimes quite different
lines than I do, based mainly on classical analogies. They then concentrate on the
identification of the appropriate interaction Lagrangean for the Standard Model,
and on the nontrivial delicacies of computation of Feynman diagrams.

I shall rather concentrate on the conceptual structure of QFT with emphasis
on its features as a genuine quantum theory: Hilbert space, expectation values,
fluctuations, spectral properties, etc., and essentially stop at the GML formula
(Sect. 2.8). I then turn to conformal quantum field theory, both in 4 and in 2
spacetime dimensions, which is my personal special field of research.

1.1 Beyond QM

Quantum Mechanics cannot be the ultimate theory of subatomic particle interac-
tions for several reasons:

– QM is a non-relativistic theory (the Schrödinger equation is a transcription
of the non-relativistic law Ekin = p2/2m plus the deBroglie relations).

– QM assumes a fixed number of particles, therefore cannot treat particle pro-
duction processes (which occur in collider experiments).

– QM cannot, in particular, properly treat light (a) which is necessarily relativis-
tic and (b) with photons continuously being produced and annihilated (radiation
of matter, thermodynamics with photon number N(T ) ∼ U(T )/E ∼ T 4/T = T 3.

– QM started from the observation that light and matter have the same cor-
puscular and wave features. However, the wave function is a probability amplitude

which is conceptually very different from the electromagnetic field amplitude: the
former is part of the description of a state, while the latter is an observable on the
same footing as observables like momentum = operators in Schrödinger QM.

1.2 QM particles vs. quantum fields

The dynamical variables of a classical particle are its position and momentum. In
QM, they become Hilbert space operators Xi and Pj, subject to canonical CRs.

1
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The position is not an observable of a classical field, but instead the field am-
plitude φ(x) at a given position x is an observable. Correspondingly, the field
amplitudes become operators φ(x) in QFT, with x just a label. There is no po-
sition operator X in QFT. On the other hand, classical fields possess energy and
momentum densities, which typically are some polynomials function of the field and
its gradient. The corresponding polynomials of the quantum field will be the energy
and momentum density quantum fields, and their integrals are the Hamiltonian H
and the momentum operator P .

2 Quantum fields

2.1 Relativistic symmetries

In the Heisenberg picture of QM, observables are functions of time, evolving ac-
cording to

U(t)A(t0)U(t)∗ = A(t0 + t)

with the unitary time evolution operator U(t) = eiHt, where H the Hamilton
operator. The infinitesimal version of the time evolution is the Heisenberg equation

∂tA(t) = i[H,A(t)].

The fact that the time evolution can be written in this form (H = const), and that
U is unitary, reflects the symmetry of the system under time translations.

Quantum fields depend on space and time, and a relativistic quantum system
is invariant under space- and time-translations. Therefore one has

U(a)φ(x)U(a)∗ = φ(x + a)

where x = (x0 = ct, ~x) and a = (a0,~a), and

U(a) = eiPµaµ

≡ ei(P 0a0−~P ·~a).

cP 0 = H is the Hamiltonian, and ~P are the components of the momentum. The
infinitesimal version is

i[Pµ, φ(x)] = ∂µφ(x).

Symmetry under Lorentz transformations is implemented in the same way:

φ(Λx) = U(Λ)φ(x)U(Λ)∗,

infinitesimal:
i[Mµν , φ(x)] = (xµ∂ν − xν∂µ)φ(x),

where U(Λ) = eiλµνMµν . In particular, Li = 1
2
εijkMjk is the orbital momentum of

the field. For a boost in direction i by the velocity v = c · tanh θ (i.e., (Λx)0 =
cosh θ · x0 + sinh θ · xi etc.), one has λ0i = −λi0 = 1

2
θ (all others = zero).
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The composition laws for translations and Lorentz transformations defines the
Poincaré group: Let U(a, Λ) = U(a)U(Λ). Then

U(a1, Λ1)U(a2, Λ2) = U(a1 + Λ1a2, Λ1Λ2).

The infinitesimal version is the Lie algebra

[Pµ, Pν ] = 0, [Mµν , Pκ] = i(ηνκPµ − ηµκPν),

[Mµν ,Mκλ] = i(ηνκMµλ − ηµκMνλ − ηνλMµκ + ηµλMνκ).

Lorentz transformation laws for vector fields (like the electromagnetic vector
potential), for tensor fields (like the electromagnetic field strengths), or for spinor
fields (like the Dirac field for the electron) are more complicated:

i[Mµν , φa(x)] =
(
(xµ∂ν − xν∂µ)δb

a + (σµν)
b
a

)
φb(x),

where the fields have several components and the tensors (σµν)
b
a constitute different

matrix representations of the Lie algebra of the Lorentz group.

We assume that there is a unique state vector Ω ∈ H which is invariant under
U , in particular, PµΩ = 0. This state has zero energy and momentum, and is called
the vacuum state. All other states should have positive energy, i.e., the vacuum is
the ground state.

2.2 Causality and Locality

Special relativity includes, apart from the Poincaré symmetry, another new feature:
Causality. Since causal effects should always occur after their cause, two events at
spacelike separation cannot have any influence on each other: namely, in a suitable
Lorentz frame, either event would be after the other.

In quantum theory, typical “events” are measurements performed at some point
in space and time. Absence of influence means that the corresponding quantum
operators commute. In quantum field theory, the typical quantum operators at the
point x in space-time are field strengths φ(x). Therefore, we should have that

[φ(x), φ(y)] = 0 if (x − y)2 < 0.

This is also referred to as Local Commutativity, or Locality, for short.

2.3 Particles

The notion of “particle” has never entered the previous characterization of quantum
fields. How are quantum fields associated with particles?

We have to find Hilbert space realizations of the above (and possibly more)
algebraic relations among operators. The “particles” arise as special states in the
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Hilbert space which “behave like” multi-particle states, in the sense of (asymptot-
ically well-localized) distributions of energy and momentum. An example of what
this means, will be presented in the next subsection on free fields.

Notice here that the Hilbert space realization requires, among other things, a
unitary representation of the Poincaré group:

Wigner has identified “particles” with irreducible representations of the Poincaré
group. One-particle states form irreducible representations of the Poincaré group:
in the simplest (scalar) case, one has an (improper) basis of momentum eigenstates
|k〉 for four-momentum vectors on the “mass shell”

k ∈ Hm = {k ∈ R
4 : kµk

µ = m2, k0 > 0}

(we henceforth put c = ~ = 1), such that

Pµ|k〉 = kµ|k〉 ⇔ U(a)|k〉 = eiak|k〉 = ei(ω(~k)t−~k~a)|k〉,

where ω(~k) =
√

~k2 + m2 is the energy belonging to the momentum ~k, and

U(Λ)|k〉 = |Λk〉.

For spinor and tensor fields, one-particle states arise in multiplets for each momen-
tum. The law under translations is the same, but under Lorentz transformations,
there is an additional matrix representation mixing the components of the spinor
or tensor multiplets.

The full Hilbert space decomposes into a subspace of one-particle states, plus
an orthogonal complement. States in the complement evolve, asymptotically at
large times, into superpositions of states that “look like” multi-particle states (e.g.,
the expectation value of the energy density at t → ±∞ is well-localized along
the trajectories of the particles). This is a highly non-trivial dynamical feature
(“asymptotic completeness”), and the multi-particle state content of the Hilbert
space is in general unknown. Only in interaction-free QFT, multi-particle states
look like multi-particle states at all times, and the Hilbert space is just the Fock
space over the one-particle subspace (see below).

2.4 Free fields

2.4.1 CCR

We assume the existence of operators a(k) and their adjoints a∗(k) for each mo-
mentum k on the mass-shell Hm, satisfying the momentum space canonical com-
mutation relations (CCR)

[a(k), a(k′)] = 0, [a(k), a∗(k′)] = (2π)3 · 2ω(~k) · δ(~k − ~k′).
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From these, we can construct the hermitean “time-zero” fields

φ(~x) := (2π)−3

∫
d3k

2ω(~k)

(
a(k)ei~k·~x + a∗(k)e−i~k·~x

)
,

π(~x) := (2π)−3

∫
d3k

2i

(
a(k)ei~k·~x − a∗(k)e−i~k·~x

)
.

These satisfy the position space CCR

[φ(~x), φ(~x′)] = [π(~x), π(~x′)] = 0, [φ(~x), π(~x′)] = iδ(~x − ~x′),

which are regarded as the quantum version of classical canonical Poisson brackets
of a field and its conjugate momentum.

We now solve the equation of motion

(¤ + m2)ϕ(t, ~x) = 0

with initial values
ϕ(0, ~x) = φ(~x), ∂tϕ(0, ~x) = π(~x).

The unique solution is

ϕ(t, ~x) := (2π)−3

∫
d3k

2ω(~k)

(
a(k)ei(~k·~x−ω(~k)) + a∗(k)e−i(~k·~x−ω(~k))

)
.

This can be written in a covariant form as

ϕ(x) =

∫

Hm

d̃k
(
a(k)e−ikµxµ

+ a∗(k)eikµxµ)
,

where

d̃k =
d3k

(2π)32k0

∣∣∣
k0=ω(~k)

is the Lorentz-invariant integration measure on the mass hyperboloid Hm.

This is the simplest possible quantum field. One can compute the commutation
relations at different space-time points, and finds

[ϕ(x), ϕ(y)] =

∫
d̃k

(
e−ik(x−y)−e−ik(y−x)

)
= (2π)−3

∫
d4k sign(k0) δ(k2−m2) e−ik(x−y).

This distribution vanishes at equal times when ~x 6= ~y, and because it is Lorentz
invariant, it vanishes whenever x and y are spacelike separated, ie, the field is
indeed a local field.
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2.4.2 Fock representation

The postulated momentum space CCR can be realized as creation and annihilation
operators on the Fock space, which is spanned by the (improper) vectors

a∗(k1) · · · a
∗(kn)Ω

(symmetric under permutations). The action of a(k) on such vectors is computed
by commuting a(k) past all a∗(ki), by using the momentum space CCR and the
defining property a(k)Ω = 0 of the ground state, as for the QM harmonic oscillator.
Likewise, inner products between Fock space vectors are computed by using that
the adjoint of a∗(k) is a(k), and proceeding as before. From these rules, it turns
out that the Fock space has the structure

F(H1) =
⊕

n

H⊗n
1

∣∣
symm

,

where H1 is spanned by the improper vectors |k〉 = a∗(k)Ω, and H⊗0
1 ≡ C · Ω.

H1 is an irreducible repn of the Poincaré group, which induces a representation
on the entire Fock space. The generators can be written as

Pµ =

∫
d̃k kµa

∗(k)a(k),

(and similar for the Lorentz generators Mµν). It follows that state vectors a∗(k1) · · · a
∗(kn)Ω

are eigenvectors of Pµ with four momentum k1 + · · · + kn.

Thus, the free field ϕ is defined on the Fock space. We can compute its 2-point
function W

(m)
2 (x, y) ≡

(
Ω, ϕ(x)ϕ(y)Ω

)
:

W
(m)
2 (x, y) =

∫
d̃k e−ik(x−y) = (2π)−3

∫
d4k θ(k0) δ(k2 − m2) e−ik(x−y),

For m = 0, this can be displayed directly in x-space:

W
(m=0)
2 (x, y) = lim

ε↓0

−(2π)−2

(x0 − iε)2 − ~x2
≡ lim

ε↓0

−(2π)−2

x2 − iεsign (x0)
.

This “function” is actually a distribution, singular at (x − y)2 = 0. The indicated
“iε-prescription” arises from the fact that the Fourier transform is supported on
4-momenta in the forward hyperboloid.

It is now easy to see that W2(x, x) is a divergent integral. This means that
ϕ(x)2 has a divergent vacuum expectation value (or: ϕ has infinite fluctuations in
the vacuum state). Thus, quantum fields are too singular to be multiplied with
each other, they are rather distributions. However, for free fields, one can define
Wick products such as

:ϕ(x)2:



QFT–primer, KH Rehren, Univ. Göttingen, October 18, 2012 7

where the Wick product : · : stands for “normal ordering”, i.e., all annihilation
operators a are moved to the right of creation operators a∗. Wick ordered products
of free fields define new local quantum fields.

The most important example is the stress-energy tensor which is the symmetric
tensor field, constructed in analogy with classical field theory,

Θµν(x) = :
(
∂µϕ∂νϕ − ηµν

(1

2
∂κϕ∂κϕ −

m

2

2

ϕ2
))

:

It satisfies the conservation laws ∂κΘ
µκ(x) = 0 and ∂κ(x

µΘνκ(x) − xνΘµκ(x)) = 0.
The corresponding conserved quantities are the generators of the Poincaré group:

P µ =

∫
d3x Θµ0(t, ~x), Mµν =

∫
d3x

(
xµΘν0(t, ~x) − xνΘµ0(t, ~x)

)
,

where the integrals do not depend on the fixed time t. In particular, its components
T µ0 are the energy and momentum densities. These properties characterize the
stress-energy tensor: in a general QFT, the SET is a symmetric conserved tensor
field T µν , such that its moments as above are the generators of the Poincaré group.

The SET can be used to explore local features of Hilbert space vectors like
Φ = a∗(k1) · · · a

∗(kn)Ω (in the free field case), such as their distribution of energy
and momentum in space and time. It turns out that expectation values of the
energy and momentum densities ρµ(x) = (Φ, Θµ0(x)Φ) in such states are functions
in space and time that are concentrated along trajectories with velocity ki/m. This
a posteriori justifies the interpretation of these states as multi-particle states.

We have found that the state space of a quantum field is spanned by states
describing particles. This is the final meaning of the “particle–wave dualism”,
emerging naturally in quantum field theory. In the same way, the states of the
electromagnetic field will describe photons, and electrons and positrons will arise
as states of the Dirac field.

2.5 Correlations

Returning to the general case: one defines the correlation functions as the vacuum
expectation values

Wn(x1, · · · , xn) := (Ω, φ(x1) · · ·φ(xn)Ω)

(or more generally mixed correlations among different fields).

The reconstruction theorem states that one can reconstruct the fields and the
Hilbert space from the knowledge of all correlation functions. (For experts: the
reconstruction is a variant of the GNS construction, which in turn generalizes
the reconstruction of a probability distribution when the moments of a random
variable are known.) The correlation functions must satisfy a certain positivity
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property, in order to ensure that the reconstructed Hilbert space has a positive-
definite inner product. Otherwise, the corresponding “quantum theory” would not
have a probabilistic interpretation, and would be essentially meaningless.

Moreover, when the correlation functions are invariant under joint Poincaré
transformations:

Wn(x1, · · · , xn) = Wn(Λx1 + a, · · · , Λxn + a),

then the reconstructed Hilbert space is equipped with a unitary representation
U(a, Λ). A certain support property of the Fourier transforms of the correlation
functions ensures that this representation has positive energy. (Another formula-
tion in position space is to require that a correlation function is a distribution,
which is the boundary value of an analytic function, similar as the “iε-prescription
displayed for the massless 2-point function above.)

Finally, when the correlation function is invariant under permutation of two
neighboring arguments xi and xi+1 provided (xi−xi+1)

2 < 0, then the reconstructed
quantum field is local.

Thus, the entire information about a quantum field is encoded in its correlation
functions. In principle, one could construct a QFT by providing a formula how to
produce arbitrary correlation functions. (One such formula consists in trying to
define the correlation function by some path integral.)

However, as we have explained, the admissible correlation functions must satisfy
a list of properties, which are not easy to fulfill simultaneously. One would therefore
like to have a general understanding what the “most general form” of an admissible
correlation function could be. Unfortunately, this has been achieved only for the
case of 2-point functions (n = 2): The Källen-Lehmann representation of the most
general scalar 2-point function is

W2(x, y) =

∫

m≥0

dρ(m2) W
(m)
2 (x, y),

where W
(m)
2 (x, y) is the 2-point function of the massive free field, as above, and

dρ(m2) is any positive, polynomially bounded measure.

2.5.1 Wick’s theorem

Because free fields and their Wick products are expressed in terms of creation and
annihilation operators, their correlation functions = vacuum expectation values
can be computed by using their commutation relations, just as with the harmonic
oscillator in QM. In practice, this is quite tedious. Wick’s theorem states how this
can be done almost without effort.

One needs to know the free 2-point function W2(x, y) =
(
Ω, ϕ(x)ϕ(y)Ω

)
. Then

a product
ϕ(x1) · · ·ϕ(xN)
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can be written as a sum over all possible “contraction schemes”, i.e., one selects
pairs i < j and replaces the pair of factors in the product by W2(xi, xj). The
remaining uncontracted field operators are normal-ordered, and finally all such
schemes are summed over. E.g.,

ϕ(x) = :ϕ(x):, ϕ(x1)ϕ(x2) = W2(x1, x2) + :ϕ(x1)ϕ(x2):,

ϕ(x1)ϕ(x2)ϕ(x3) = W2(x1, x2):ϕ(x3): + W2(x1, x3):ϕ(x2): + W2(x2, x3):ϕ(x1):

+ :ϕ(x1)ϕ(x2)ϕ(x3):,

while for n ≥ 4, one also has terms with more than one contraction, such as

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) = W2(x1, x2)W2(x3, x4) + W2(x1, x3)W2(x2, x4) +

+ W2(x1, x4)W2(x2, x3)

+ W2(x1, x2):ϕ(x3)ϕ(x4): + five similar terms

+ :ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4):.

Since the vacuum expectation value of any normal ordered product with at
least one factor is zero, the VEV of a product of an even number of field operators
is just the sum over all fully contracted terms (n contractions), while the VEV
of an odd number of field operators vanishes, because there is always at least one
uncontracted field in the sum over contraction schemes. This yields all correlation
functions of a free field as sums over products of 2-point functions. (This property
of a field is actually equivalent to being a free field.)

To compute also correlation functions of Wick products of free fields, the fol-
lowing rule pertains: A product of Wick products

(
:ϕ(x1) · · ·ϕ(xn1

):
)
·
(
:ϕ(xn1+1) · · ·ϕ(xn2

):
)
· · ·

(
:ϕ(xnr+1) · · ·ϕ(xN):

)

is obtained from the previous expansion for the product ϕ(x1) · · ·ϕ(xN) by simply
omitting all contraction schemes which involve a contraction of two fields which
belong to the same Wick product of the left-hand side. E.g.,

ϕ(x1) · :ϕ(x2)ϕ(x3): = W2(x1, x2):ϕ(x3): + W2(x1, x3):ϕ(x2): + :ϕ(x1)ϕ(x2)ϕ(x3):.

In this expression, one may equate the arguments of the fields within each Wick
product of the left-hand side, so that, e.g.,

ϕ(x1) · :ϕ(x2)
2: = 2 W2(x1, x2):ϕ(x2): + :ϕ(x1)ϕ(x2)

2:.

Observe the appearance of combinatorial factors (like “2”) in this expansion!
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2.6 Mathematical nature of quantum fields

The 2-point function of the free field is

W2(x, y) =

∫
d̃k e−ik(x−y) ≡ (2π)−3

∫
d4k δ(k2 − m2)θ(k0) e−ik(x−y).

At x = y, this is a divergent integral (actually, also at (x − y)2 = 0). Notice that
W2(x, x) = (Ω, φ(x)2Ω), if it were finite, would measure the statistical fluctuation
of the operator φ(x) in the vacuum state. That it diverges tells us that the operator
has infinite fluctations already in the simplest of all possible states! This exemplifies
the general fact that quantum fields are necessarily extremely singular objects:
their proper mathematical nature is that of an “operator-valued distribution”, i.e.,
“smeared” operators

ϕ(f) :=

∫
d4x f(x) ϕ(x)

are much better behaved when f is a sufficiently smooth and fast decaying function:
they are now unbounded operators defined on a dense domain of the Hilbert space
containing the vacuum vector, and they can be multiplied with each other. In
particular, they have finite fluctuations (depending on the smearing function f).

These properties are formulated in the Wightman axiomatic approach to QFT.

2.7 LSZ formula

In experiments, one usually measures cross sections in scattering processes. How
do these relate to the correlation functions (given our claim, that the latter contain
every theoretical information about the theory)?

The LSZ formula (Lehmann-Symanzik-Zimmermann) is the result of an analysis
of the large-time behaviour of interacting quantum fields. It expresses differential
scattering cross sections as squares of scattering amplitudes. The latter can be
extracted from the Green functions of the theory: more precisely, they are certain
residues of the Fourier transforms of the Green functions, which have poles in
momentum space.

The Green functions in turn are vacuum expectation values of time-ordered
field products. Time ordering means that a product of factors φ(x) is re-ordered
according to the rule “later to the left”:

T
[
φ(x1) · · ·φ(xN)

]
:= φ(xπ(1)) · · ·φ(xπ(N))

where π is a permutation such that x0
π(1) > · · · > x0

π(N). (This prescription seems
not to be Lorentz invariant, but because of local commutativity, it is: the sign of
the relative time can only be switched by a Lorentz transformation, when the two
points are at spacelike separation. But in this case, the order of the operators does
not matter.)
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The time-ordered correlation functions = Green functions are obtained from the
proper correlation functions just by applying the proper permutation of arguments,
e.g., (

Ω, T
[
φ0(x)φ0(y)

]
Ω

)
= θ(x0 − y0)W2(x, y) + θ(y0 − x0)W2(y, x).

2.8 Perturbation theory

In most practical approaches to interacting QFT, one specifies the interaction by a
Lagrangean density LI which typically is a local polynomial in the fields, e.g., the
Standard Model). How can one compute the Green functions with this interaction?

The Gell-Mann–Low formula gives a formal computational recipe:

(
Ω, T

[
φ(x1) · · ·φ(xN)

]
Ω

)
=

(Ω, T
[
φ0(x1) · · ·φ0(xN)ei

R

d4y :LI(φ0(y)):
]
Ω)

(Ω, T
[
ei

R

d4y :LI(φ0(y)):
]
Ω)

.

Here, φ on the left-hand side is the desired interacting field, while φ0 on the right-
hand side is a free field. Therefore, the right-hand side can be computed in terms
of free field theory. In perturbation theory, one expands the exponential into a
power series, so that the problem amounts to compute all expressions of the form

in

n!

(
Ω, T

[
φ0(x1) · · ·φ0(xN):LI(φ0(y1)): · · · :LI(φ0(yn)):

]
Ω

)
,

integrated over y1, . . . , yn and summed over n. Thus, one needs to compute vacuum
expectation values of time-ordered products of Wick products in free field theory.

This is again done by another generalization of Wick’s theorem: it states that, in
comparison with the previous ordinary product of Wick products, the time-ordering
is completely taken care of if one only replaces the 2-point function W2(x, y) by
the time-ordered 2-point function (Green function)

−iG2(x, y) =
(
Ω, T

[
φ0(x)φ0(y)

]
Ω

)
= θ(x0 − y0)W2(x, y) + θ(y0 − x0)W2(y, x).

(The factor −i is conventional. G2 is also known as the Feynman propagator GF .)

The combinatorics of all the possible contraction schemes is most efficiently
represented pictorially in terms of Feynman diagrams, whose vertices correspond to
the above interaction points yi (i = 1, . . . , n), and the connecting lines correspond
to the contractions. Contractions involving the field points xk (k = 1, . . . , N) are
depicted as lines with one or both ends not attached to a vertex, and labelled xk.

Thus, every diagram with as many vertices as the order n of the perturbative
expansion of the exponential ei

R

LI corresponds to one term in the Wick expansion
of the time-ordered VEV, with combinatorial factors. It is a product of coupling
constants (coefficients appearing in LI), and Feynman propagators whose argu-
ments are either xk or yi, as the structure of the graphs tells. These have to be
integrated over yi, and summed over n.
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It turns out that the integration over yi is in general divergent, and that the
“most divergent” diagrams are vacuum diagrams (diagrams without external lines).
It also turns out that the numerator of the GML formula, which is also treated as
a power series 1 + · · · , precisely cancels all vacuum subdiagrams. But there are
more divergent integrals. To deal with them, one has to start the renormalization
program, in order to make sense of these formal computations. Here, perturbative
QFT becomes really difficult. The summation over n is usually never performed,
partly because one cannot compute higher order diagrams anyway, partly because
comparison with the experiment tends to show good agreement already at low
orders. But the most serious problem with the sum over n is that it is known to be
divergent! Non-perturbative QFT consists in attempts to circumvent this problem
by avoiding the power series expansion of the exponential altogether, and define
the right-hand side of the Gell-Mann–Low formula in a different way.

3 Conformal symmetry

Masses and other dimensionfull parameters (in units ~ = c = 1) set an absolute
scale, since quantities like energy or distance can be measured relative to this scale.
A theory which has no absolute scale, should “look the same” if all lengths are scaled
by the same factor λ. This invariance is called dilation invariance. (Quantities like
momentum or fields will then scale with a different power of λ.) Scale-free quantum
systems often exhibit even a larger symmetry: Conformal symmetry.

3.1 Conformal symmetry of spacetime (D > 2)

Conformal transformations are transformations of space and time which change
the scale by a position-dependent, but direction-independent factor. In other
words: lengths may be scaled, but angles are invariant. In D > 2 dimensions, all
(orientation-preserving) conformal transformations are products of Poincaré trans-
formations, dilations

xµ 7→ λxµ (λ ∈ R+),

and special conformal transformations

xµ 7→
xµ − x2 bµ

1 − 2bx + b2 x2
(b ∈ R

D).

The latter are singular at points where 1−2bx+b2 x2 = 0. One may, however, regard
Minkowski spacetime MD just as a chart of the four-dimensional Dirac manifold
MD, whose complement has measure zero. Then the conformal transformations
are perfectly regular on MD, and the mentioned singularities are just coordinate
singularities.

A convenient description of the Dirac manifold is as follows. Consider the aux-
iliary space R

2,D ≡ R
D+2 equipped with the metric ηAB = diag(+,− · · · −, +)
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(A,B = 0, . . . , D + 1). Consider the cone of null vectors X 6= 0 such that
ηAB XAXB = 0. A ray in the cone is an equivalence class X ∼ λX (λ ∈ R \ {0}).
The Dirac manifold MD is the set of equivalence classes. Its elements can be re-
garded as pairs of two unit vectors e = (X0, XD+1) ∈ R

2 and f = (X1, . . . , XD) ∈
R

D with (e, f) ∼ (−e,−f), i.e.,

MD =
(
S1 × SD

)/
Z2.

Since SO(2, D) preserves the auxiliary metric, the conformal group is

ConfD = SO(2, D)+

/
Z2,

where the subscript + denotes the orientation preserving subgroup.

The coordinates

xµ :=
Xµ

XD + XD+1
(µ = 0, . . . , D − 1)

define the Minkowski chart for all points in MD for which XD +XD+1 6= 0. Acting
on X ∈ R

2,D with various subgroups of SO(2, D), yields the conformal transfor-
mations of the Minkowski coordinates as above.

3.2 Conformal symmetry of quantum fields

Assuming conformal symmetry to be realized in quantum field theory, means re-
placing the Poincaré group in the previous chapter by the conformal group. Since
fields also carry a dimension (they scale like some power d of mass), the scale
transformation law reads

U(λ)φ(x)U(λ)∗ = λd φ(λx).

More generally, fields can be classified by the representation of ConfD under which
the states φ(x)Ω transform. The irreducible unitary positive-energy representations
of the conformal group in D = 4 dimensions are characterized by three parameters
(“quantum numbers”)

(d ≥ 0; j± = 0,
1

2
, 1,

3

2
, . . . ).

d is the (scaling) dimension, and (j+, j−) refers to the transformation law under
the Poincaré group. Scalar fields have j+ = j− = 0, symmetric traceless tensor
fields of rank r have j+ = j− = 1

2
r. The massless free scalar field has (d; j+, j−) =

(1; 0, 0), the massless free Dirac field (four components) splits in two chiral 2-
spinors with (d; j+, j−) = (3

2
; 1

2
, 0) and (3

2
; 0, 1

2
), and the six components of the free

electromagnetic field Fµν splits in two chiral parts ~E ± ~B with quantum numbers
(2; 1, 0) and (2; 0, 1).

The transformation law under a general conformal transformation g ∈ ConfD

reads
U(g)φ(x)U(g)∗ =

[
det(∂(gx)µ/∂xν)

]d/D
φ(λx).
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for scalar fields of dimension d; the Jacobi determinant det(∂(gx)µ/∂xν) must be
replaced for general fields by a matrix representation acting on field multiplets.

The infinitesimal version of this law is (again only for scalar fields)

i[Pµ, φ(x)] = ∂µφ(x), i[Mµν , φ(x)] =
(
xµ∂ν − xν∂µ

)
φ(x),

i[D,φ(x)] =
(
xκ∂κ + d

)
φ(x), i[Kµ, φ(x)] =

(
2xµ(xκ∂κ) − x2∂µ + 2dxµ

)
φ(x),

where D and Kµ are the infinitesimal generators for the dilations and for the special
conformal transformations.

Like P µ and Mµν , also the new generators D and Kµ are integrals over densities
that can be expressed in terms of the stress-energy tensor. In the case of the
massless free field, is convenient to add to the previous stress-energy tensor Θµν

the term −1
3
:
(
∂µϕ∂νϕ − ϕ∂µ∂νϕ + ηµν∂κϕ∂κϕ

)
:. The total stress-energy tensor is

then

Tµν(x) = :
(2

3
∂µϕ∂νϕ −

1

3
ϕ∂µ∂νϕ −

1

6
ηµν ∂κϕ∂κϕ

)
:.

Tµν satisfies the same conservation laws as Θµν before, and the generators Pµ and
Mµν do not change when Θ is replaced by T (because all integrals extend over
gradients of fields). But Tµν has the additional advantage that it is traceless:

T µ
µ (x) ≡ ηµνT

µν(x) = 0.

This implies that the additional conservation laws hold: ∂κ(xµT
µκ(x)) = 0 and

∂κ

(
2xµxνT

νκ(x) − x2T µκ(x)
)

= 0. The corresponding conserved quantities are the
remaining generators of the conformal group:

D =

∫
d3xxµT

µ0(t, ~x), Kµ =

∫
d3x

(
2xµxνT

ν0(t, ~x) − x2T µ0(t, ~x)
)
,

where again the integrals do not depend on the fixed time t.

In general, the stress-energy tensor of a conformal QFT is a traceless symmet-
ric conserved tensor field T µν , such that its moments are the generators of the
conformal group.

The “inversion” I : xµ 7→ xµ

x2 is a conformal transformation I ∈ ConfD such
that I ◦ Ta ◦ I−1 is a special conformal transformation with bµ = aµ when Ta is a
translation by aµ. Therefore, on the infinitesimal level, Kµ is unitarily conjugate
to Pµ (by U(I)). It follows that, since P 0 has nonnegative spectrum, also K0 has
nonnegative spectrum. Then also the “conformal Hamiltonian”

L0 =
1

2

(
P 0 + K0

)

has nonnegative spectrum. L0 is the infinitesimal generator for the “rotations” in
the circle S1 (in MD = (S1×SD−1)/Z2), therefore its spectrum is discrete. Indeed,
in the representation associated with a field of scaling dimension d, the spectrum
of L0 is (contained in) the set d + N0.
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In general in QFT, a classical symmetry may be represented only by a projective
representation of the group (because states are state vectors up to a phase). For
the Poincaré group this means, that one has to admit spinor representations in
which space rotations by 2π are represented by U(2π) = −1. The same is true for
spinor representations of the conformal group (j+ +j− = half-integer). In addition,
when d − j+ − j− is not an integer, the “rotations” in the S1 factor of MD are
represented by a complex phase U(2π) = e2πiL0 = e2πi(d−j+−j

−
)1.

(It is sometimes convenient to regard the fields to “live” on the universal cov-

ering space M̃D = R × SD−1, so that the “rotation” in S1 becomes a shift by 2π
“into the next sheet”.)

Conformal symmetry fixes the form of the 2-point function, except for a nor-
malization. 2-point functions vanish unless the two fields have the same quantum
numbers. For scalar and vector fields,

(Ω, φa(x1)φb(x2)Ω) ∼
1

ρ(x12)d
, (Ω, φµ

a(x1)φ
ν
b (x2)Ω) ∼

ηµνx2
12 − 2xµ

12x
ν
12

ρ(x12)d+1
,

where x12 ≡ x1 − x2 and ρ(x) ≡ −(x0 − iε)2 + ~x 2. 1 It also fixes the form of scalar
3-point functions:

(Ω, φa(x1)φb(x2)φc(x3)Ω) ∼
1

ρ
1

2
(da+db−dc)

12 ρ
1

2
(da−db+dc)

13 ρ
1

2
(−da+db+dc)

23

,

where ρij ≡ ρ(xij). Scalar 4-point functions are determined up to a function of two
“conformal cross ratios”

s =
ρ12ρ34

ρ13ρ24

, t =
ρ14ρ23

ρ13ρ23

.

Notice that cross ratios are invariant under conformal transformations.

The condition that the 2-point function describes a positive-definite scalar prod-
uct between vectors φ(x)Ω, puts a lower bound on the possible scaling dimensions
(“unitarity bound”), e.g., apart from the trivial field 1 with d = 0, one must have
in D = 4 dimensions d ≥ 1 for scalar fields, and d ≥ 2j + 2 for symmetric traceless
tensor fields (j+ = j− = j > 0) of rank 2j.

We put D = 4 from now on.

3.3 Global Conformal Invariance (GCI)

Global Conformal Invariance is the postulate that covering representations do not
occur. This implies that only integer d and integer j+ + j− are admitted. In par-
ticular, one excludes perturbative approaches where the scaling dimension depends
continuously on the coupling constant. Thus, GCI is a non-perturbative, axiomatic

1(2π)−2 · ρ(x1 − x2)
−1 is just the free massless 2-point function, see the preceding chapter.
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assumption: Correlations will not be computed by some GML formula, but rather
classified by the general features they must satisfy.

GCI has strong consequences: apart from d and j+ + j− being integers, it
implies that all fields commute also at timelike distance (because there always is
a conformal transformation, that maps a timelike pair to a spacelike pair). Thus
non-cummutativity only occurs at lightlike separation: for this reason, this feature
is called “Huygens property”.

Moreover, all correlation functions are rational functions. More precisely, cor-
relations of scalar fields of dimension di are of the general form

(Ω, φ1(x1) · · ·φn(xn)Ω) =
∑

µ

Cµ

∏

i<j

ρ
µij

ij ,

where the sum extends over multi-indices µ = (µij), µij = µji ∈ Z, subject to the
“sum rule” ∑

i

µij = −di.

The sum rule ensures conformal invariance. Notice that the ratio of any two mono-
mials for two admissible multi-indices can be written as a product of cross-ratios
ρijρkl/ρikρjl; therefore, one may select any admissible multi-index µ, and write all
other monomials

(Ω, φ1(x1) · · ·φn(xn)Ω) = f(cross ratios) ·
∏

i<j

ρ
µij

ij ,

where f is a sum of products of powers of cross ratios.

Correlation functions of tensor fields contain additional factors polynomial in
the coordinate differences (and the powers of ρij satisfy different sum rules).

3.4 Partial waves

The full Hilbert space H carries a positive-energy representation of the conformal
group, hence of the Lie algebra

[Pµ, Pν ] = [Kµ, Kν ] = [D,Mµν ] = 0, [D,Pµ] = −iPµ, [D,Kµ] = iKµ,

[Mµν , Pκ] = i(ηνκPµ − ηµκPν), [Mµν , Kκ] = i(ηνκKµ − ηµκKν)

[Mµν ,Mκλ] = i(ηνκMµλ ∓ . . . ), [Pµ, Kν ] = 2i ηµνD − 2i Mµν

of its generators. This Lie algebra possesses three “Casimir operators”: polyno-
mials in the generators that commute with all generators. The simplest one is
quadratic:

C2 =
1

2

(
KµP

µ + PµK
µ
)
− D2 +

1

2
MµνM

µν .

By Schur’s Lemma, every irreducible representation space is an eigenspace of the
Casimir operators. One can therefore identify subrepresentations in H by diago-
nalizing the Casimir operators.
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Consider an (improper) vector φ1(x1)φ2(x2)Ω. Applying a Casimir operator,
commuting it across the fields using the known commutation relations among gen-
erators X = P,M,D,K and fields, and using the invariance of the vacuum XΩ = 0,
one finds a differential operator, e.g. (for d1 = d2 = d)

C1 φ1(x1)φ2(x2)Ω = ρ−d
12

(
x2

12 ∂1 · ∂2 − 2(x12 ⊗ x12) · (∂1 ⊗ ∂2)
)
ρ−d

12 · φ1(x1)φ2(x2)Ω.

This implies relations of the form

(Ω, φ1 · · ·φkCφk+1 · · ·φnΩ) = D(Ω, φ1 · · ·φnΩ),

where C is a Casimir operator (acting on the Hilbert space) and D the corre-
sponding differential operator in the arguments xk+1, . . . , xn (or x1, . . . , xk) (acting
on the correlation function). Because the Casimir operators have only certain
(known) eigenvalues in positive-energy representations, every correlation function
must be a sum of functions which are simultaneous eigenfunctions of these differ-
ential operators with admissible eigenvalues. These eigenfunctions can be thought
of as contributions, called “partial waves”,

(Ω, φ1Πλ1
φ2Πλ2

· · ·Πλn−1
φnΩ)

where Πλ are the projections on the subspaces of H corresponding to the represen-
tation λ. Because

∑
λ Πλ = 1, the full correlation is a sum of the partial waves.

(Actually, the projections Πn−1 and Π1 are redundant, because vectors φ(x)Ω be-
long to the representation determined by the quantum numbers of the field φ.)

The partial waves are therefore determined (up to a normalization) by a set
of eigenvalue differential equations. The fact that the full correlation function
can be represented as a linear combination of these eigenfunctions, poses further
restrictions on the correlation functions. In particular, the admissible eigenvalues
are only compatible with a maximal degree of singularity at lightlike distances
ρij = 0. This implies certain lower bounds for the admissible powers µij.

These “pole bounds” in turn restrict the admissible multi-indices µ to a finite
set, hence every (scalar) correlation contains only a finite number of undetermined
coefficients Cµ (as in the preceding section). This is an enormous progress concern-
ing the most general admissible form of correlations functions, as compared to the
Poincaré invariant situation: a GCI QFT can be “parameterized” by a countable
set of coefficients!

Yet, the coefficients Cµ are subject to further constraints, to be discussed in
the next section. It one could solve these constraints, one would have a complete
classification of GCI quantum field theories. This ultimate goal is certainly out
of reach, but one can make partial progress. The evaluation of the constraints on
4-point functions shows that some sets of coefficients are admitted that cannot be
produced by correlation functions of Wick products of free fields, indicating the
possible existence of unknown non-trivial (non-free) models.



QFT–primer, KH Rehren, Univ. Göttingen, October 18, 2012 18

3.5 Hilbert space positivity

Consider, for simplicity, a hermitean free field φ and the vector Φf =
∫

d4x f(x)φ(x)Ω.
One can compute the norm of this vector:

||Φf ||
2 =

∫
d4xd4y f(x)f(y) W2(x, y).

That this quantity must be ≥ 0 for all f , is a (nonlinear) condition on the 2-
point function. Indeed, the above unitarity bound on the scaling dimensions of
fields arises from this condition: for dimensions below the unitarity bound, one can
always find functions f1 and f2 such that ||Φf1

||2 > 0 and ||Φf1
||2 < 0 (i.e., changing

the sign of W2 does not help).

The same type of argument holds for vectors of the form
∫

d4x1d
4x2 f(x1, x2)

φ1(x1)φ2(x2)Ω, giving rise to a positivity condition on the 4-point function. Eval-
uating this condition by brute force “for all functions” f(x1, x2) is very hard.2

The trick is, instead, to insert a projection as before, and require positive norm
square for vectors of the form

∫
d4x1d

4x2 f(x1, x2) Πλφ1(x1)φ2(x2)Ω, for each λ
separately. Their norm squares are integrals over the corresponding 4-point partial
wave. Such partial waves are either positive or negative definite, so positivity of the
4-point function reduces to the determination of a sign, one for each representation
λ. This method works if the partial waves are explicitly known. Unfortunately,
they are not known for more that four points, and also not for tensor fields.

The “operator product expansion” says that vectors of the form form
∫

d4x1d
4x2

f(x1, x2) Πλφ1(x1)φ2(x2)Ω can also be written as
∫

Kf (x) φλ(x)Ω, where φλ is an-
other quantum field with the transformation behaviour specified by the represen-
tation λ. (If φ1 and φ2 are free fields, then the fields φλ would just be certain Wick
products of free fields.) In general, one only knows the existence of such fields.

Recent progress shows that one can directly obtain φλ(x)Ω by application of a
suitable differential operator Dλ in x1 and x2 to the vector φ1(x1)φ2(x2)Ω, and then
equating x1 = x2 = x. These differential operators are taylored such that they will
annihilate all contributions from different representations λ′ 6= λ, i.e., they have a
similar effect as the insertion of a projection operator Πλ.

Doing the same operation, say, on the first pair and the last pair of a 2n-point
correlation, reduces the latter to a 2n− 2-point correlation (now involving the new
fields φλ). This must still be positive. Proceeding iteratively, one ends up with
2-point correlations for which positivity is just ensured by the correct sign of the
coefficient.

In this way, one has an efficient test of positivity of 2n-point functions: namely
all coefficients obtained this way (with different representations λ chosen in each

2Indeed, in general QFT, positivity analysis is the most difficult part of the construction. It
is very easy to construct correlation functions that have all desired properties except positivity,
but to decide whether these are positive or not, is in general impossible.
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step) must be positive. This is clearly only a necessary condition, but it can be
developped to become also a sufficient condition.

If the given correlation functions are parametrized by coefficients Cµ, this
amounts to finding a system of inequalities that these coefficients must satisfy
– in general both upper and lower bounds.

This program has been accomplished for 4-point functions of scalar fields. Re-
finements concerning Cauchy-Schwartz inequalities rather than norm positivity are
only partially under control. For tensor fields, the method is known to work “in
principle”, but has not been carried out in practice.

3.6 Conformal QFT in 2 dimensions

In two spacetime dimensions, the conformal group (the angle-preserving diffeo-
morphisms of spacetime R

2) is much larger than Conf2 = SO(2, 2)+/Z2. Namely,
because the metric can be written as ds2 = dx02 − dx12 = d(x0 + x1)d(x0 − x1),
it contains arbitrary diffeomorphisms of the “chiral coordinates” x0 ± x1 of the
lightlike axes.

Yet, it turns out that 2-point functions are not invariant under these diffeo-
morphisms, but only under the group Conf2 = SO(2, 2)+/Z2. The diffeomorphism
symmetry is broken because the vacuum vector is not invariant (see below).

The 2D Dirac manifold is, as in Sect. 3.1,

M2 = (S1 × S1)/Z2.

Introducing angular variables τ and ξ for the “timelike” and “spacelike” circles,
the formula xµ = Xµ

XD+XD+1 in Sect. 3.1 specializes to

x± = x0 ± x1 =
sin τ

cos τ + cos ξ
±

sin ξ

cos τ + cos ξ
= tan

τ ± ξ

2
.

It is also convenient to introduce

ei(τ±ξ) =: z± =
1 + ix±

1 − ix±
⇔ x± =

z± − 1

i(z± + 1)
.

In these variables,
M2 = S1 × S1

with coordinates (z+, z−), a pair of complex numbers of modulus one. 2D Minkowski
space is the chart R × R with coordinates (x+, x−).

The conformal group can be decomposed as

Conf2 = Möb+ × Möb−,

where Möb = SL(2)/Z2 is the group of fractional linear transformations

gx =
ax + b

cx + d
,
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and Möb± acts on x± and leaves x∓ invariant.

The one-parameter subgroups
( 1 a

0 1

)
,
( e

1

2
t 0

0 e−
1

2
t

)
, and

( 1 0
−b 1

)
, respec-

tively, correspond to the translations x → x + a, dilations x → λx and special
conformal transformations x → x/(1 − bx).

Since quantum correlation functions are boundary values of analytic functions,
one may study the analytically continued correlation functions at the “Euclidean
points” where x0 is purely imaginary, hence (x+ = iy + x, x− = iy − x) are no
longer two independent real numbers, but instead a complex conjugate pair (ζ,−ζ);
likewise (z+, z−) are no longer independent complex numbers of modulus one, but
instead a complex conjugate pair (z, z) in the complex plane. These “Schwinger
functions” describe correlations in a classical field theory in two Euclidean space
dimensions (no time), such as correlations of a Statistical Mechanics system on
a surface, at thermal equilibrium. In such systems, conformal invariance is an
emergent feature at critical points. Most of the formulae are more or less the same
in Euclidean CFT and in Minkowski spacetime conformal QFT (except for the
Cayley transform x 7→ z), but the physical interpretation is quite different. The
most notable difference is that in Euclidean CFT there is no need for a Hilbert
space with positive metric, so that notions related to unitarity are either absent or
strongly relaxed.

The SM interpretation of 2D CFT has also strongly influenced the terminology
and notations. In order to emphasize that conformal QFT is just a special case of
general QFT with additional symmetries, I prefer to retain QFT terminology and
notations, which may cause some pains when comparing with CFT literature.

The generators of a unitary representation of Conf2 can be rewritten as

P± =
1

2
(P0 ± P1), D± =

1

2
(D ± M01), K± =

1

2
(K0 ∓ K1),

which satisfy the commutation relations of two commuting Lie algebras sl(2, R) of
the Möbius group

[D,P ] = −iP, [D,K] = iK, [P,K] = 2iD.

Positivity of the spectrum of P 0 in every 2D Lorentz frame implies that P+ and
P− must both be positive. Positive-energy representation of sl(2, R) are uniquely
determined by a real parameter h ≥ 0 (the lowest eigenvalue of L0 = 1

2
(P + K)),

so that conformal covariant fields are characterized by a pair (h+, h−). The sum
h+ + h− is the scaling dimension, and the difference h+ − h− is the helicity (the
analog of spin in two dimensions). The infinitesimal transformation law of fields
φ(x+, x−) read

i[P±, φ] = ∂±φ, i[D±, φ] = (x±∂± + h±)φ, i[K±, φ] = (x±2∂± + 2x±h±)φ.
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This fixes 2- and 3-point correlations up to normalization:

(Ω, φ1(x1)φ2(x2)Ω) ∼ (x+
12)

−2h+

ε (x−
12)

−2h−

ε

provided both fields have the same dimensions h± (otherwise = 0), and

(Ω, φ1(x1)φ2(x2)φ3(x3)Ω) ∼ (x+
12)

−h+

1
−h+

2
+h+

3
ε (x+

13)
−h+

1
+h+

2
−h+

3
ε (x+

23)
+h+

1
−h+

2
−h+

3
ε ·(+ → −).

Here (x)−ν
ε stands for the distribution limε↓0

(
−i

x−iε
)ν = Γ(ν)−1

∫ ∞

0
kν−1dk e−ikx.

The most remarkable feature of 2D conformal QFT is the presence of “chiral
fields”, with the stress-energy tensor as prime example: By symmetry T µν = T νµ

and tracelessness T µ
µ = 0, the SET has only two independent components T 00 = T 11

and T 01 = T 10. The conservation law ∂µT
µν implies ∂+(T 00 − T 01) = 0 and

∂−(T 00 +T 01) = 0, i.e., these combinations are fields that depend on a single chiral
variable x±

T+(x+) := T00(x) + T01(x) and T−(x−) := T00(x) − T01(x).

Because T+(x+) can be expressed in terms of components of T µν(x′) for any
point x along a lightray with x′0 + x′1 = x+, and similar for T−(y−), it follows
from locality that T+(x+) commutes with T−(y−), because there are always pairs
of points along the two lightrays that are spacelike separated. The same holds true
for T+(x+) and T+(y+), provided x+ 6= y+, and (+ → −).

Thus, we have found two independent fields “defined on the lightray”: fields of
different chirality commute, and fields of equal chirality commute if their arguments
differ. (In general, there may be further chiral fields sharing these properties.) Also
the chiral generators of the Möbius group are moments of the chiral stress-energy
tensors

P± =

∫
T±(x) dx, D± =

∫
xT±(x) dx, K± =

∫
x2T±(x) dx.

Chiral QFT (keeping only the chiral fields of one chirality) is a kinematically
extremely simple type of QFT. It unites “in a single dimension” the spacelike
feature of local commutativity with the timelike feature of positive spectrum of the
time translations.

Chiral commutators can only be sums of derivatives of δ(x − y), multiplied
by other fields. For the SET, this property, together with the requirement that
its moments are the generators of the conformal group, uniquely determines the
commutation relations

i[T (x), T (y)] = −
(
T (x) + T (y)

)
δ′(x − y) +

c

24π
δ′′′(x − y)1,

up to an undetermined “central charge” c > 0. The central charge must be positive,
because the commutation relation determines the 2-point function

(Ω, T (x)T (y)Ω) =
c

8π2
(x − y)−4

ε .
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Consider the moments of the SET

Ln = L∗
−n =

1

2

∫
(1 + ix)1+n(1 − ix)1−n T (x).

Clearly, L0 = 1
2
(P + K) and L±1 = 1

2
(P − K) ± iD are linear combinations of the

Möbius generators. The CR of the SET implies the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
m(m2 − 1)δn+m,0.

This algebra may be regarded as the quantum version of the Lie algebra of the
diffeomorphism group, where Ln are generators of infinitesimal diffeomorphisms
that in the complex coordinate z on the circle are given by δnz ∼ zn+1. The
presence of the central charge means that the diffeomorphisms are represented
only projectively.

Because the vacuum vector is Möbius invariant, it is annihilated by L0 and L±1.
Positivity of the energy requires nonnegative spectrum of L0. Because [Ln, L0] =
−nLn, generators with n > 0 lower the eigenvalue of L0. Therefore one must
have LnΩ = 0 (n > 0). Then ||L−nΩ||2 = (Ω, LnL−nΩ) = (Ω, [Ln, L−n]Ω) =
c
12

n(n2 − 1) > 0 for n > 1, hence the vacuum vector is Möbius invariant, but
not diffeomorphism invariant: this is why the larger symmetry of angle-preserving
maps beyond Conf2 = SO(2, 2)+/Z2 = Möb+ × Möb− is necessarily broken.

A remarkable, highly nontrivial result states that positive-energy representa-
tions of this algebra exist only if c is one of the numbers

c = 1 −
6

m(m + 1)
(m = 3, 4, . . . ) or c ≥ 1.

Other values cannot occur in conformal QFT. This result was obtained by an al-
gebraic approach to Hilbert space positivity, which is much more efficient than the
approach via partial wave analysis as described in the previous section, but it works
only for c < 1. It is even possible to classify and construct all conformal quantum
field theories whose chiral stress-energy tensors have c+ = c− < 1: for each admis-
sible c < 1, there is only a small number of such theories. A complete classification
of quantum field theories of a certain type is an unprecendented achievement.

Notice that a full 2D conformal QFT will contain, apart from the SET, other
fields: possibly there are more chiral field, but in addition there will be local
fields that depend on both x+ and x−. The latter are called “primary” if their
commutators with T± contain only the field and its derivatives, but no other fields.
Commutators of primary fields with the SET are completely fixed by locality and
conformal symmetry. When c < 1, this information can be exploited to obtain
their correlation functions.

Partial waves are defined in the same way as in 4D. Since the conformal group
splits into two chiral Möbius groups, the partial waves factorize into chiral partial
waves, which are functions of x+

i , resp. of x−
i only. Since there is only one Casimir

operator C = 1
2
(PK + KP ) − D2 for sl(2, R), their determination is much easier.


